NTNG1 Mutations Are a Rare Cause of Rett Syndrome

Hayley L. Archer,¹ Julie C. Evans,¹ David S. Millar,¹ Peter W. Thompson,² Alison M. Kerr,³ Helen Leonard,¹ John Christodoulou,³ David Ravine,⁶ Lazarus Lazarou,² Lucy Grove,⁷ Christopher Verity,⁸ Sharon D. Whatley,⁷ Daniela T. Pilz,² Julian R. Sampson,¹ and Angus J. Clarke¹

¹Institute of Medical Genetics, Cardiff University, University Hospital of Wales, Cardiff, United Kingdom
²Institute of Medical Genetics, University Hospital of Wales, Cardiff, United Kingdom
³Department of Psychological Medicine, Glasgow University, Glasgow, United Kingdom
⁴Telethon Institute of Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Australia
⁵Western Sydney Genetics Program, The Children's Hospital at Westmead and Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
⁶Western Australian Institute of Medical Research and Centre for Medical Research, University of Western Australia, Perth, Australia
⁷Department of Community Paediatrics, Suffolk West NHS Care Trust, Suffolk, United Kingdom
⁸Child Development Centre, Addenbrookes Hospital, Cambridge, United Kingdom
⁹Department of Medical Biochemistry, University Hospital of Wales, Cardiff, United Kingdom

Received 17 August 2005; Accepted 14 December 2005

A translocation that disrupted the netrin G1 gene (NTNG1) was recently reported in a patient with the early seizure variant of Rett syndrome (RTT). The netrin G1 protein (NTNG1) has an important role in the developing central nervous system, particularly in axonal guidance, signalling and NMDA receptor function and was a good candidate gene for RTT. We recruited 115 patients with RTT (females: 25 classic and 84 atypical; 6 males) but no mutation in the MECP2 gene. For those 52 patients with epileptic seizure onset in the first 6 months of life, CDKL5 mutations were also excluded. We aimed to determine whether mutations in NTNG1 accounted for a significant subset of patients with RTT, particularly those with the early onset seizure variant and other atypical presentations. We sequenced the nine coding exons of NTNG1 and identified four sequence variants, none of which were likely to be pathogenic. Mutations in the NTNG1 gene appear to be a rare cause of RTT but NTNG1 function demands further investigation in relation to the central nervous system pathophysiology of the disorder.

Key words: Rett syndrome; netrin G1; autism; NMDA receptor

INTRODUCTION

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that predominantly affects females (OMIM no. 312750). A series of clinical criteria, which characterize the disorder have been developed [Hagberg et al., 1983; Trevathan and Naidu, 1988] and recently modified [Hagberg et al., 2002]. Patients with all of these criteria are generally diagnosed with classic RTT. Mutations in the MECP2 gene (methyl CpG binding protein 2 gene, OMIM no. 300005) account for most cases of classic RTT [Amir et al., 1999]. Even in those without an identifiable MECP2 mutation, the features may be related to dysfunction of the MeCP2 protein [Renieri et al., 2003]. The MECP2 mutation detection rate is much lower in patients with atypical RTT, suggesting that this group is both clinically and genetically more heterogeneous [Charman et al., 2005]. The early onset seizure variant of RTT is associated with an atypical presentation in which early seizures mask the onset of the disorder [Hanefeld, 1985; Goutieres and Aicardi, 1986] and in which MECP2 mutations are uncommon [Charman et al., 2005]. Mutations in the X-linked CDKL5 gene (cyclin-dependent kinase-like 5, OMIM no. 300203) were found in some patients with this RTT variant [Tao et al., 2004; This article contains supplementary material, which may be viewed at the American Journal of Medical Genetics website at http://www.interscience.wiley.com/pages/1552-4825/suppmat/index.html.

Grant sponsor: Health Foundation (UK); Grant sponsor: NIH; Grant number: 1 R01 HD43100-01A1 PI; Grant sponsor: NHMRC program; Grant number: 353514.

*Correspondence to: Dr. Hayley L. Archer, Institute of Medical Genetics, Cardiff University, University Hospital of Wales, Heath Park, Cardiff CF14 4XX, UK. E-mail: archerhl@cardiff.ac.uk
DOI 10.1002/ajmg.a.31133
Weaving et al., 2004; Evans et al., 2005a; Mari et al., 2005; Scala et al., 2005].

A recently published report described a patient with atypical RTT who presented with early onset of epileptic seizures (not infantile spasms) and a de novo translocation: 46,XX,t(1;7)(p13.3;q31.33) which disrupted the Netrin G1 gene (NTNG1, OMIM no. 608818), located on chromosome 1 [Borg et al., 2005]. When evaluated at 10 years of age by one of the authors (HA), she had many features of RTT but still had poor eye contact and no interest in people.

NTNG1 spans 340 kbases and has recently been shown to contain ten exons, nine of which are coding [Aoki-Suzuki et al., 2005]. The membrane bound product of this gene netrin G1 (NTNG1) is involved in axonal guidance and signalling and NMDA receptor function [Lin et al., 2003; Aoki-Suzuki et al., 2005]. Its important role in the developing central nervous system made it a good candidate gene for RTT.

We recruited patients with both classic and atypical RTT but no mutation in MECP2 to determine whether mutations in NTNG1 accounted for a significant proportion of patients with these clinical phenotypes.

MATERIALS AND METHODS

Patient Recruitment

Patients with suspected RTT (total 115), but in whom a MECP2 mutation had not been found were identified with consent from within the UK (85 cases) and from the Australian Rett Syndrome Database (30 cases) [Colvin et al., 2003] (see Table I). Of 109 female patients, 25 had classic RTT, and 84 atypical RTT, of which 46 had seizure onset in the first 6 months of life. The remaining six patients were male. In the 102 patients without infantile spasms, exon 1 mutations and large genomic rearrangements of MECP2 had also been excluded [Laccone et al., 2004; Evans et al., 2005b; Ravn et al., 2005]. No MECP2 mutations have been reported so far in patients with infantile spasms, so this additional analysis was not likely to yield any further mutations in the other 13 patients. Mutations in CDKL5 were excluded in the subset of 52 patients with seizure onset in the first 6 months of life or infantile spasms, either by sequence analysis or DHPLC [Weaving et al., 2004; Evans et al., 2005a].

RESULTS

No pathogenic mutations were identified in NTNG1 in 109 female and six male patients with suspected RTT. In total, four sequence variations were identified in the study group, all of which were unlikely to be pathogenic (see Table II). Three were intron sequence variations, which did not involve any sequences known to interact with the splicing machinery. One was a silent polymorphism within the coding region. Examination of this sequence using splice site prediction programs did not suggest that this sequence variation leads to the generation of an exonic splicing enhancer site (http://www.fruitfly.org/seq_tools/splice.html, ESE Finder Release 2.0: http://rulai.cshl.edu/tools/ESE/ [Cartegni et al., 2003] and http://www.genet.sickkids.on.ca/~all/splicesitefinder.html).

DISCUSSION

We have investigated a large group of patients with a clinical diagnosis of RTT for mutations in NTNG1. We did not identify any likely pathogenic mutations and only found four sequence variants. We did not identify the synonymous SNP (A282A) nor the intronic variant IVS7 + 60T > G in the control panel. This was not surprising given the low frequency of these variants within the study group. Although we did not find any pathogenic NTNG1 mutations in our study group, it is possible that large genomic rearrangements such as exonic deletions, which would not be identified by sequencing, may represent the common mutations in MECP2 mutation.
negative RTT patients. While this may explain our negative results, it remains likely that \textit{NTNG1} mutations are a rare cause of RTT.

Four further exons (exons 6–9) of \textit{NTNG1} were identified after the publication of the translocation case [Aoki-Suzuki et al., 2005]. By alignment of the flanking sequences described in the published translocation case with the sequence of \textit{NTNG1}, we have re-defined the location of the chromosome 1 breakpoint to intron 8 (IVS8 + 570) of \textit{NTNG1} [Borg et al., 2005]. \textit{NTNG1} contains 10 exons and there are at least 10 different \textit{NTNG1} mRNA transcripts in mice, nine of which include the coding part of exon 10 [Aoki-Suzuki et al., 2005]. It has already been shown that the translocation patient has at least one functional \textit{NTNG1} isoform: AB023193 (see the online Fig. 1 at http://www.interscience.wiley.com/ipages/1552-4825/suppmat/index.html) [Borg et al., 2005]. This isoform is not membrane bound and little is known about its expression pattern. For the remaining nine isoforms, which all contain exon 10, loss of the functional C-terminal domain would lead to loss of the glycosyl phosphatidylinositol lipid (GPI) anchor encoded by this exon [Meerabux et al., 2005]. Effective removal of the GPI anchor in tissue culture severely disrupts neurite outgrowth of thalamocortical neurons [Nakashiba et al., 2002]. Even if the truncated transcripts were translated, it is unlikely that they would retain critical functions in a non-membrane bound state.

Further investigation of the specific regional brain expression of the isoforms of \textit{NTNG1} may be helpful in understanding both the translocation patient’s phenotype and the overlap with RTT. \textit{NTNG1} is expressed in the thalamus, particularly strongly in the thalamic neurons [Yin et al., 2002], and is important for normal NMDA receptor function [Nishimura et al., 2004]. Isoforms G1a, c, d, e, and l are expressed in human fetal brain, and of these G1c and d are the most highly expressed [Meerabux et al., 2005]. Glc binds to the \textit{NTNG1} ligand in tissue culture, promoting outgrowth of thalamic neurons [Lin et al., 2003]. Of the remaining five isoforms not expressed in fetal brain, at least four are expressed in human adult brain [Meerabux et al., 2005]. This differential expression demonstrates that \textit{NTNG1} is developmentally regulated in humans. It is interesting that there is also strong expression of G1c in the kidney, and that this does not bind to the one known \textit{NTNG1} ligand [Meerabux et al., 2005]. It was hypothesized that \textit{NTNG1} mutations may also be found in patients with renal vascular disease [Meerabux et al., 2005]. However, the translocation patient did not have any apparent renal abnormalities nor have they been reported, so far, in mouse knockouts.

Normal function of both the dopaminergic pathways and glutamatergic pathways are required for normal NMDA receptor function and for normal neurogenesis. In patients with RTT it is clear that these and other neurotransmitter systems are impaired and that neuronal maturation and synaptogenesis is abnormal [Johnston et al., 2003, 2005]. It has been shown that CSF glutamate levels are increased [Hamberger et al., 1992] and while NMDA receptor numbers are initially increased they later significantly decrease in number [Blue et al., 1999; Johnston et al., 2001]. Glutamate deficiency, NMDA receptor blockade and \textit{NTNG1} knockouts in rodents produce a phenotype that overlaps with that of RTT and the MECP2 knockout mice [Hauber, 1998; Hohmann et al., 1998; Mohn et al., 1999; Ohtake et al., 2000; Aoki-Suzuki et al., 2005; Moretti et al., 2005]. Partial NMDA receptor blockade in mice results in stereotypes, abnormal motor activity, social withdrawal as well as sensory and cognitive deficits [Mohn et al., 1999]. The translocation patient, whom we have independently investigated, presented with these features: all of which are also found in patients with RTT. However, social withdrawal is typically a temporary state in RTT but this appeared to be permanent in the translocation patient. The overlap in phenotype of the translocation patient and those with RTT may reflect converging end pathways resulting in disruption of the NMDA system. Further research is needed to investigate the potential role of \textit{NTNG1} in those with RTT, atypical autism, mental retardation and, epilepsy.

ACKNOWLEDGMENTS

We thank all the families from the UK and Australia who participated in this study for their ongoing support for Rett syndrome research. We also acknowledge the technical support provided by Jackie Harry and Patricia Goddard and the work of Alka Saxena, Sarah Williamson, and Carol Philippe.
REFERENCES

